Principles of Macroeconomics: International Trade 1
Class 11

Alex Houtz September 29, 2025

University of Notre Dame

Overview

- ► Announcements:
 - LC 5, GH 5 due Friday at 11:59pm
 - Midterm: October 16 in class!
- ► Topics:
 - Production Possibilities Frontier
 - Comparative Advantage
- ► Readings:
 - Chapter 5.1, chapter 2.1
 - Chapters 5.3 5.4

World Trade has Taken off

US Imports, 2023

US Exports, 2023

International Trade

- ► International trade has exploded
- ▶ But why should countries trade? Why don't we just make everything ourselves?
- ► Key idea for today: comparative advantage
- ▶ We first need to analyze how countries make production decisions

What if we have two goods?

- ► So far, we have primarily thought about one good, GDP
- ▶ But if we want to think about countries trading, we need to think about two separate goods
 - Think about lunch in elementary school I will trade my apple for your sandwich
 - In international trade the US sells airplanes to China to buy iPhones
- ► Let's think about two goods (Ricardo, 1817)
 - (1) Wine
 - (2) Cloth

Production

► Let's assume a very simple production function:

$$Y_{wine} = A_{wine} M_{wine}$$

 $Y_{cloth} = A_{cloth} M_{cloth}$

where M_x denotes the quantity of inputs used to produce good x, with $x \in \{\text{wine}, \text{cloth}\}$

▶ Next, we make sure we don't use more inputs than we have total:

$$M_{wine} + M_{cloth} \leq M$$

► And we can posit what *M* looks like:

$$M = K^{\alpha} L^{1-\alpha}$$

► Let's take total *M* as given

7

Production Possibilities

- ► How much wine and cloth can we produce?
 - If we only make wine: $Y_{wine}^{max} = A_{wine}M$
 - If we only make cloth: $Y_{cloth}^{max} = A_{cloth}M$
- ▶ But what if we produce both wine and cloth?

$$M = M_{wine} + M_{cloth}$$
 $M = \frac{Y_{wine}}{A_{wine}} + \frac{Y_{cloth}}{A_{cloth}}$
 $A_{wine} = Y_{wine} + \frac{A_{wine}}{A_{cloth}} Y_{cloth}$
 $Y_{wine} = \underbrace{A_{wine}M}_{Y_{wine}} - \frac{A_{wine}}{A_{cloth}} Y_{cloth}$

Production Possibilities Frontier

$$Y_{wine} = Y_{wine}^{max} - \frac{A_{wine}}{A_{cloth}} Y_{cloth}$$

- ▶ If you plot this, it's just a line (y = mx + b)
 - y-intercept: Y^{max}_{wine}
 x-intercept: Y^{max}_{cloth}
 - The PPF connects these two points
 - Slope: $-\frac{A_{wine}}{A_{cloth}}$
- ► Key ideas:
 - Feasibility: Can we make this combination of wine and cloth?
 - Efficiency: Are resources being used to produce as much as possible
 - Opportunity Cost: How much wine do we give up for cloth
- ▶ Suppose M = 1 and $A_{wine} = 30$, $A_{cloth} = 40$

Visually

Numerical

- Suppose we are at point A. Then $M_{wine} = \frac{Y_{wine}}{A_{wine}} = \frac{15}{30} = \frac{1}{2}$. $M_{cloth} = \frac{20}{40} = \frac{1}{2}$. So $\frac{1}{2} + \frac{1}{2} = 1$, we are using all of M
- ► At point B, $M_{wine} = \frac{9}{30}$, $M_{cloth} = \frac{28}{40}$. Then $\frac{9}{30} + \frac{28}{40} = 1$
- ► At point C, $M_{wine} = \frac{30}{30}$ and $M_{cloth} = \frac{40}{40}$. But, $\frac{30}{30} + \frac{40}{40} > 1$; we're using more than the amount of inputs we have!
- At point D, $M_{wine} = \frac{9}{30}$ and $M_{cloth} = \frac{20}{40}$. But then $\frac{9}{30} + \frac{20}{40} < 1$, so we aren't using all of our inputs!

Feasibility: only points inside the PPF can be produced

Efficiency: Only points on the PPF make full use of economic resources

Opportunity Cost

- ► If an economy is operating on the PPF, then producing more wine requires producing less cloth
 - For clarity: if we only produce wine, we can make 30
 - If we only produce cloth, we can make 40
 - So we give up 30 wine to make 40 cloth
- ▶ Opportunity cost is the absolute value of the slope of the PPF. For our linear PPF:

$$\left| -\frac{A_{wine}}{A_{cloth}} \right| = 1$$

• How much Y do we give up to get X?

Economic Growth

- (1) Growth from Inputs
 - Suppose that inputs (K, L) increase, then M' > M
 - This shifts the PPF shifts out
 - Y_{wine}^{max} and Y_{cloth}^{max} both increase by the same % amount
 - Slope of PPF is the same, but we can do more production
- (2) Growth from Improvements in Productivity
 - (a) Neutral productivity growth: $\%\Delta A_{wine} = \%\Delta A_{cloth}$
 - $Y_{wine}^{max} = Y_{cloth}^{max}$ both increase by the same %
 - Then the slope of the PPF remains the same
 - (b) Biased productivity growth: $\%\Delta A_{wine} \neq \%\Delta A_{cloth}$
 - Suppose $\%\Delta A_{wine} > \%\Delta A_{cloth}$
 - Then Y_{wine}^{max} increase, but Y_{cloth}^{max} doesn't
 - ullet So the PPF slope increases, as the opportunity cost of X increases

So What Should We Produce?

- ▶ PPF tells us what we *can* produce, not what we will produce
- ▶ Let's assume that a competitive producer makes production decisions
 - Price of wine: pwine
 - Price of cloth: *p_{cloth}*
 - Cost of buying/hiring factor inputs is the same for all producers

Options:

- (1) Hire 1 unit of inputs to produce cloth; get A_{cloth} units of output worth $p_{cloth}A_{cloth}$
- (2) Hire 1 unit of inputs to produce wine; get A_{wine} units of output worth $p_{wine}A_{wine}$

What should the producer do?

▶ Well, the producer wants to make money, so if $p_{cloth}A_{cloth} > p_{wine}A_{wine}$, produce cloth. Rewrite this condition:

$$p_{cloth}A_{cloth} > p_{wine}A_{wine}$$
 $rac{p_{cloth}}{p_{wine}} > rac{A_{wine}}{A_{cloth}}$

- ▶ Interpretation: Relative price of cloth is greater than the opportunity cost of cloth
- ► Then the producer should completely specialize in producing cloth

▶ Well, the producer wants to make money, so if $p_{cloth}A_{cloth} < p_{wine}A_{wine}$, produce cloth. Rewrite this condition:

$$p_{cloth}A_{cloth} < p_{wine}A_{wine}$$

$$\frac{p_{cloth}}{p_{wine}} < \frac{A_{wine}}{A_{cloth}}$$

- ▶ Interpretation: Relative price of cloth is less than the opportunity cost of cloth
- ► Then the producer should completely specialize in producing wine
- ▶ If $p_{cloth}A_{cloth} = p_{wine}A_{wine}$, then the producer is indifferent between producing cloth and wine
- Production can be diversified
- ▶ Suppose that the US produces without trade and consumers want both wine and cloth.
- ► Production amounts depend on the exact demand from consumers, but let's suppose the US produces at (16,18)

Autarky

Opportunity Cost in Autarky

- ► Without trade, prices reflect domestic opportunity costs
 - If a country has high productivity in cloth, then the relative price of cloth will be low
 - If a country has high productivity in wine, then the relative price of cloth will be high
- Now suppose another country, like Brazil, is also in autarky. Suppose they also have M=1, $A_{wine}^{Brazil}=10$, $A_{cloth}^{Brazil}=30$

Autarky with Brazil

Prices in the US and Brazil

- ► Autarky relative price in US: $\left(\frac{p_{cloth}^{US}}{p_{wine}^{US}}\right)^{\text{autarky}} = \frac{A_{wine}^{US}}{A_{cloth}^{US}} = \frac{3}{4}$
- ► Autarky relative price in Brazil: $\left(\frac{p_{cloth}^{Brazil}}{p_{wine}^{Brazil}}\right)^{\text{autarky}} = \frac{A_{wine}^{Brazil}}{A_{cloth}^{Brazil}} = \frac{1}{3}$
- ▶ The relative price of cloth is high in the US, but low in Brazil
- Opportunity for Trade!!

Comparative Advantage

- ► Since $\left(\frac{p_{cloth}^{US}}{p_{wine}^{US}}\right)^{\text{autarky}} > \left(\frac{p_{cloth}^{Brazil}}{p_{wine}^{Brazil}}\right)^{\text{autarky}}$, US has a comparative advantage in wine and Brazil has a comparative advantage in cloth
- ► Alternative definition, compare TFP:

$$rac{A_{wine}^{US}}{A_{cloth}^{US}} > rac{A_{wine}^{Brazil}}{A_{cloth}^{Brazil}}$$

US has comparative advantage in wine because its relative productivity for wine is higher than Brazil's

Comparative Advantage vs. Absolute Advantage

- lackbox US is better at everything: $A_{wine}^{US} > A_{wine}^{Brazil}$ and $A_{cloth}^{US} > A_{cloth}^{Brazil}$
- ▶ US has an absolute advantage in producing both wine and cloth
- ▶ But Brazil has a comparative advantage in cloth still

No one can ever have a comparative advantage in everything!!

Summary

- ► Production possibilities frontier
- ► Choosing to produce one good requires you to not produce a different good
- ► This opportunity cost gives us a relative price for goods
- ► Other countries will have different relative prices for good
- We could potentially exploit this difference in relative price to make everyone better off
- ► Remember: homework due Friday night
- ► Read chapter 5.3-5.4